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Abstract—Internet of Things (IoT) is growing as a key
pillar of smart city development. This growth is accompa-
nied with serious cybersecurity risks, especially with the
IoT botnets emergence. In this context, Intrusion Detection
Systems (IDSs) proved their efficiency in detecting various
attacks, that may target IoT networks, especially when
leveraging Machine/Deep Learning (ML/DL) techniques.
In fact, ML/DL-based solutions give ”machine-centric” de-
cisions about intrusion detection in IoT network, which will
be then executed by humans, i.e., executive cyber-security
staff. However, ML/DL-based solutions do not provide
any explanation of why such decisions were made, and
thus their results cannot be properly understood/exploited
by humans. To address this issue, Explainable Artificial
Intelligence (XAI) is a promising paradigm, that helps
explain the decisions of ML/DL-based IDSs to make them
understandable to cyber-security experts. In this paper,
we design a novel XAI-powered framework to enable
not only detecting intrusions/attacks in IoT networks, but
also interpret critical decisions made by ML/DL-based
IDS. Therefore, we first build a ML/DL-based IDS using
Deep Neural Network (DNN), to detect and predict IoT
attacks in real time. Then, we develop multiple XAI models
(i.e., RuleFit and SHapley Additive exPlanations (SHAP))
on top of our DNN architecture, to enable more trust,
transparency and explanation of the decisions made by our
ML/DL-based IDS to cyber security experts. The in-depth
experiments results with well-known IoT attack, show the
efficiency and the explainiblity of our proposed framework.

Index Terms—Internet of Things; Intrusion Detection
System; Explainable Artificial Intelligence.

I. INTRODUCTION

Internet of Things (IoT) is an emerging paradigm
that has gained momentum and is now shaping our
future [1] [2]. IoT aims to transform our daily live
by deploying billions of smart devices, around 75 bil-
lion IoT devices by 2025 [2], to perform daily tasks.
Thus, IoT is becoming a key pillar of different sec-
tors, including Healthcare, agriculture, transportation,
and factories [1] [2]. However, with the rapid deployment

of IoT, numerous IoT vulnerabilities have emerged as
well [3]. In fact, new sophisticated and destructive IoT
attacks are increasing. For instance, Mirai IoT botnet has
performed a huge attack using many compromised IoT
attacks, including IoT gateways, closed circuit television
cameras, and routers. This subsequently resulted in the
unavailability of many Internet services such as Twitter
and Amazon, for several hours [3]. In addition, such
IoT attacks may cause extensive financial loss and huge
damage. According to a recent report [4], it is estimated
that the financial loss caused by the IoT attacks is about
$20 Billion (USD) in 2021.

To deal with IoT attacks, different security measures
are used, including firewalls, anti-virus, and access con-
trol, in order to filter and control incoming network traf-
fic. However, these measures are not sufficient/efficient
to protect the network [5], especially with the emergence
of IoT attacks. As a second line of protection, Intrusion
Detection Systems (IDSs) should be efficiently designed
to secure the IoT network against various attacks ranging
from Distributed denial-of-service (DDoS) to scanning
attacks. In this context, IDSs have proved their efficiency
in detecting various attacks, that may target IoT net-
works, especially when leveraging Machine/Deep Learn-
ing (ML/DL) techniques [6]. In fact, ML/DL techniques
consist of learning the characteristics of each attack,
so that we can quickly and efficiently identify/detect
existing and new IoT attacks, without having to update
traditional IDS rules. Hence, ML/DL-based IDSs sys-
tems give ”machine-centric” decisions about intrusion
detection, which will be then executed by humans, i.e.,
executive staff. However, such systems do not give any
explanation/interpretation about why such decisions are
made and hence their results cannot be understood by
humans. In other words, the main drawback of existing
ML/DL-based IDSs systems, particularly the most ac-
curate ones, are the black-box decisions, whose internal
functioning is hidden and not understood.

Recently, eXplainable Artificial Intelligence (XAI)
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Fig. 1. General Architecture of our XAI-based Framework for IoT IDS.

has emerged as a promising paradigm to develop new
approaches explaining how ML/DL models work. XAI
aims to make ML/DL models understandable for experts
in the domain [7]. This also enables experts to trust
and adapt such models and hence release their decisions
(models).

In this paper, we design a new XAI-powered frame-
work that comprises two main modules: (1) DL-based
IDS system: we first build a DL-based prediction model
of intrusions for IoT applications. To do so, we leverage
UNSW-NB15 dataset [8] and design a neural network
to create our prediction model; and (2) XAI-enabled
IDS system: we develop several XAI models on top of
our DL-based IDS to add more transparency and inter-
pretability to our DL-based IDS’s decisions. Specifically,
we implement RuleFit and SHAP (SHapley Additive ex-
Planations) as white-box models related to our DL-based
black-box model. Therefore, our framework enables not
only timely detecting intrusions in IoT networks, but
also interpret decisions made by our DL-based model.
This introduces more trust and transparency among our
DL-based IDS system and experts, that will execute its
decisions. This paper is organized as follows. Section II
gives a review of related work. Section III describes the
design and specification of our proposed XAI-powered
framework. Section IV presents the performance evalu-
ation of our proposed XAI-powered framework. Finally,
section V concludes the paper.

II. RELATED WORK

In this section, we briefly present the main works
that addresses the explainability of ML/DL-based IDS
systems, along with their limitations. In [9], deep neural
network is first used for network IDS and then XAI-
based framework is designed to improve the trans-
parency deep learning model. The authors leveraged
NSL KDD dataset to implement and validate several XAI

approaches including, SHAP, contrastive explanations
method, LIME, and ProtoDash. Similarly, another frame-
work used SHAP approach, to improve the transparency
of IDSs of any ML/DL-based IDS system, in [10]. The
authors used also the NSL-KDD dataset to test the
performance of the framework.
In [11], XAI is integrated with ML-based IDS to deal
with adversarial attacks. First, a random forest classifier
is built to detect network intrusions. Then, SHAP ap-
proach is applied to explain and interpret the outputs of
the random forest-based model. The performance of this
scheme is evaluated using CICIDS dataset. Besides, a
layer-wise relevance propagation (LRP) method is used
in [12] to determine input feature relevance and send
offline and online feedback to end-users, to help them
deduce which features have more impact on the predic-
tions made by IDS. In [13], an explanation approach is
proposed to deal with incorrect classifications made by
ML/DL-based IDSs. This approach helps to determine
the suitable modifications needed to correctly classify
a given dataset sample. These modifications are also
exploited to deduce the most important features, that
justify the reason for the incorrect classification. the
designed approach is evaluated and tested using NSL-
KDD dataset. A local explanation method is used in [14],
to explain/interpret each prediction separately of a ML-
based IDS.
Even the above works leveraged XAI to explain and
interpret ML/DL-based IDS, however, some of these
works are limited to traditional machine learning algo-
rithms, which are less complex and easy to interpret,
as compared to deep learning [11]. In addition, most of
them designed a general XAI framework whatever the
targeted ML/DL-based IDS [10] [12] [13]. This may
not be realistic, since each ML/DL-based IDS model
has its specific input features and performance, and the
XAI framework should consider such characteristics as
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Fig. 2. Feature Importance Scores on UNSW −NB15 dataset for: a) RuleFit; and b) SHAP.

input, to be able then in explaining ML/DL-based IDS’s
decisions.

III. OUR FRAMEWORK TO EXPLAIN DL-BASED IDS
OF IOT APPLICATIONS

This section describes the design of our proposed
XAI-empowered framework. First, we present our sys-
tem architecture. Then, we present our DNN architecture
to predict IoT intrusions/attacks in real-time, and our
XAI models to explain/interpret our DL-based IDS.

A. System Architecture

Fig. 1 shows the general system architecture of our
designed framework. The data collected from the IoT
network will be exploited, on one hand, to build a
deep learning-based model to predict/detect intrusions
in the IoT network. On the other hand, an XAI-model is
created which leveraged both the sensed data and DL-
based model’s predictions, in order to explain/interpret
such predictions. This enables not only to explain how
the DL-based model works, but also why its predic-
tions and hence decisions are made. Noting that per-
formed predictions with their explanations are showed
to different audiences through an explanation interface.
Moreover, our framework targets both users of the DL-
based model and executive staff. The users of the model
should understand and trust the model predictions, before
transferring model’s decisions to the executive staff, that
should also understand the received decisions and exe-
cute them. In the following, we present our Explainable
Deep Learning-based IDS suitable for IoT applications

B. Explainable Deep Learning-based IDS of IoT Appli-
cations

In this work, we leverage the UNSW-NB15 dataset for
the attack traffic. UNSW-NB15 is a synthetic network
security dataset that contains 100 GB of network data
samples, including several IoT attacks (e.g., backdoors,
DoS, and worms). For the pre-processing phase, we
have encoded the categorical/non-numeric input features
(i.e., ’service’, ‘proto’, and ‘state’) into numeric values
using one hot encoding techniques. Some of the the
UNSW-NB15 features (e.g., ’Destination TCP sequence
number (dtcpb) [0;4*109]’ and ’Source TCP sequence
number (stcpb) [0;4*109]’) have higher values than other
features (e.g., ’Source IP address (srcip) [0;39]’ and ’
Destination to source time to live (dttl) [0;254]’); which
may impact the final model decisions. This latter may
miss out important features that have minimum values
i.e., source time to live (dttl). This, we have applied the
standardization technique to overcome this issue. Finally,
we encoded the Labels/output features (e.g., backdoors,
Shellcode, and Fuzzers) into numerical values.

Besides, to test the effectiveness of our proposed
XAI-powered framework, we constructed a deep neural
network (DNN) model with input layer of 49 neurons,
that corresponds to the dimension of the input sample
of UNSW-NB15 dataset, five hidden layers with Leaky
Rectified Linear Unit, and an output layer of one neuron.
We implemented our proposed XAI-powered framework
using Pytorch and SHAP Library [15], an open source
library that includes various functions to explain the
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Fig. 3. Data samples distribution of features of UNSW − NB15 dataset in terms for: a) the highest scoring features using RuleFit and
SHAP; and b) the other non-irrelevant features.

output of ML/DL-based models. In this work, we have
considered two techniques, namely RuleFit and SHapley
Additive exPlanations (SHAP) methods to effectively
interpret a DL-based IDS model decisions/classifications.
The objective is to explore linear and non-linear meth-
ods, including local and global explanations. In RuleFit,
we learn sparse linear models/forms that include the
effects of interaction in a decision-making rule-based
form; it crates new features in the form of decision-
making rules and constructs a transparent model with
these features. RuleFit includes two steps: (1) it trains a
tree-based model and use it to create the decision rules;
and (2) it trains a sparse linear model (e.g., LASSO) to
select the most informative/significant features. SHAP
is a well known unified framework for model inter-

pretation; it explains the predictions of an input data
sample by calculating the contribution of each feature
to the final decision/prediction. This contribution can
be either positive or negative. The main advantage of
SHAP is that it can be applied to any model, rather
than simple/linear models. Also, instead of looking only
at local decisions/interpretations, SHAP looks at the
overall/global interpretations by summing the input val-
ues of the features and averaging all columns/features
individually.

IV. PERFORMANCE EVALUATION

The feature importance scores shows the most im-
portant/relevant features among all features of dataset;
these features have significant impact on the model pre-
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Fig. 4. Interpretation of our DNN model on UNSW − NB15 dataset with: a) Sload of 4.5 ∗ 104, a stcpb of 1.43 ∗ 109, and a tcpb of
3.5 ∗ 109 ; b) Sload of 4.9 ∗ 105, a stcpb of 0, and a dtcpb of 0; and c) Sload of 1.8 ∗ 109, a stcpb of 5.8 ∗ 109, and a dtcpb of 2.7∗109.

dictions that other features. Our proposed XAI-powered
framework investigates the use of both RuleFit and
SHAP methods, to select the most informative/significant
features and explores their effect on final model pre-
dictions. Fig. 2 shows the feature importance scores
on UNSW − NB15 dataset using RuleFit and SHAP,
respectively; it shows the highest scoring features in a
descending order.

For RuleFit method, the highest scoring features on
UNSW − NB15 dataset corresponds to the following
features: (1) sttl: corresponds to the Source to destination
time to live; (2) ct state ttl: corresponds to the Number
of each state (e.g., ACC, CLO) according to a range
of values for source/destination time to live (ttl); (3)
service: corresponds to the used protocol e.g., http,
dns, ssh; (4) dsport: corresponds to the destination port
number; (5) ct srv dst: corresponds to the number of
connections that contain the same service and destination
address in the last 100 connections; and (6) sbytes:
corresponds to Source to destination bytes. For the SHAP
method the highest scoring features on UNSW−NB15
dataset corresponds to the following features: (1) srcip:
corresponds to the Source IP address; (2) ct dst src ltm:

corresponds to the number of connections that contain
the same service and destination address in the last 100
connections; (3) ct dst sport ltm: corresponds to the
number of connections pf the same destination address
and the source port in the last 100 connections; (4)
sport: corresponds to Source port number; and (5) dstip:
corresponds to the Destination IP address. Fig. 3 shows
the data distribution of UNSWNB15 dataset features.
Fig. 3(a) shows some of highest scoring features on
UNSW −NB15 dataset, based on RuleFit and SHAP;
while Fig. 3(b) shows the other non-irrelevant features.
We observe that the most relevant features, computed
based on RuleFit and SHAP, can effectively distinguish
the two classes (i.e. Normal and Attack), because the
data distribution of the two classes is completely dif-
ferent, while the data distribution of the two classes is
similar for the other non-relevant features, which makes
classification difficult for the IDS. Fig. 4 shows the
interpretation of our DNN model on UNSW − NB15
dataset using SHAP method. Instead of examining de-
cisions of our DNN model locally, we examine the
overall/global feature importance of UNSW − NB15
dataset using SHAP, we sum up shapley the input values
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and we average all the columns/features individually.
For a particular observation, each input feature value
(e.g., Sload (source bits per second), (stcpb) Source
TCP sequence, and dtcpb) Destination TCP sequence)
has either a positive or a negative contribution to the
final decision i.e., base value. In our analysis, we have
examined three observations. Fig. 4(a) shows the first ob-
servation in which the data sample is Normal (i.e., non-
attack) and the DNN model correctly predicted/detected
as a Normal data sample. In this observation, the values
of the input features are as follows: Sload is equal to
4.5 ∗ 104, stcpb is equal to 1.43 ∗ 109, and dtcpb is
equal 3.5 ∗ 109. Fig. 4(b) shows the second observation
in which the data sample is an IoT attacks and the DNN
model correctly predicted/detected as an IoT attack. In
this observation, the values of the input features are
as follows: Sload is equal to 4.9 ∗ 105, stcpb is equal
to 0, and dtcpb is equal 0. Fig. 4(c) shows the last
studied observation in which the data sample is an IoT
attacks and the DNN model predicted as a Normal data
sample (i.e., False Negative (FN)). In this observation,
the values of the input features are as follows: Sload is
equal to 1.8∗109, stcpb is equal to 5.8∗109, and dtcpb is
equal 2.7∗109. In all these observations, the blue features
pushes the prediction of the data sample to be Normal
i.e., class 0. The larger the shaft, the more effect this
input feature of the UNSW −NB15 dataset has on the
final detection/prediction. In the first scenario (see Fig.
4(a)), we observe that the most contributing/significant
features are as follows: Sload and dtcpb. The red feature
(i.e., stcpb) reduces the probability for a data sample
to be Normal. In the second scenario (see Fig. 4(b)),
we observe that the most contributing/significant features
are as follows: stcpb and dtcpb. The red features (i.e.,
stcpb and dtcpb) drives the probability for a data sample
to be an attack. In the last scenario (see Fig. 4(c)), we
observe that the most contributing/significant features are
as follows: Sload and dtcpb. The red feature (i.e., stcpb)
reduces the probability for a data sample to be Normal.
Thus, such solid knowledge makes cybersecurity experts
more convinced of the decisions regarding ML/DL-based
IDS.

V. CONCLUSION

In this paper, we proposed a novel XAI-powered
framework that enabled not only the detection of IoT
attacks, but also the interpretation of critical decisions
made by ML/DL-based IDSs. First, we built a DNN
model to detect and predict IoT attacks in real time.
Then, we have developed multiple XAI models (i.e.,
RuleFit and SHapley Additive exPlanations (SHAP))
on top of our DNN architecture, to enable more trust,

transparency, and explainability of the decisions taken
by our ML/DL-based IDS to the cyber-security experts.
The in-depth experiments results on well-known IoT
attack, showed the efficiency and the explainiblity of our
proposed framework. This makes it a promising cyber-
security framework for accurate IoT attack detection and
explainable Deep Learning Framework for IDSs.
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